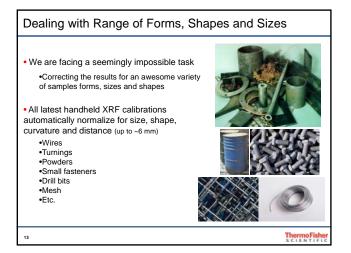
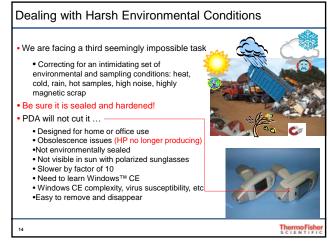
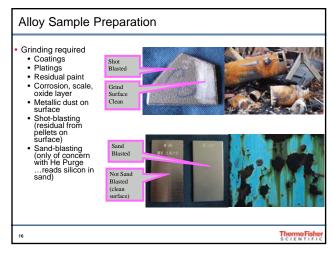
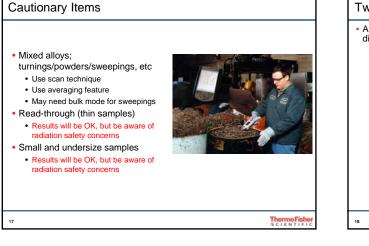
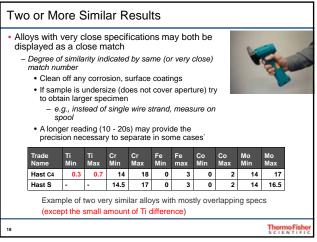

Calibration Methods

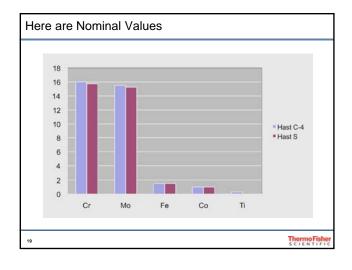

- Empirical Calibration
 - Designed to characterize samples that represent your intended use
 - · Historically the only method available
 - Limited chemistry and limited alloy families (~250 of 70,000)
 - Very accurate over limited range but cannot be made robust
 - Good for well defined set of alloys, e.g., petrochem
- FP or Fundamental Parameters
 - Currently the method of choice can be made very accurate and robust
 - Unlimited chemistry and alloy families with "standardless" calibration
 - FP, when robust and accurate, is ideal for recycle use

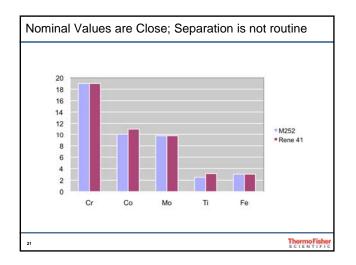

Thermo Fisher

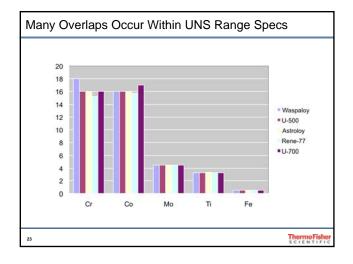


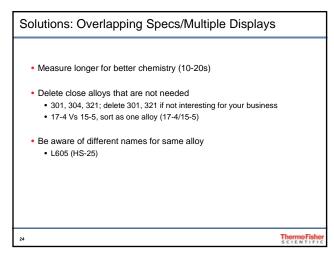


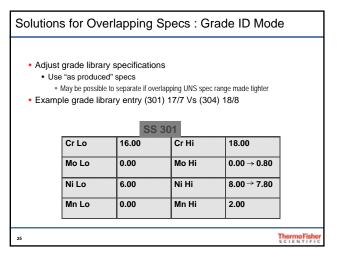


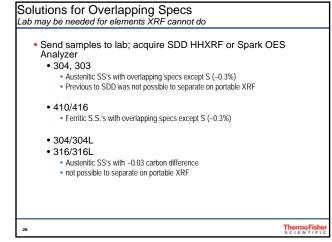









E>	Examples of Close Specifications: Superalloys											
Г												1
	Trade Name	Ti Min	Ti Max	Cr Min	Cr Max	Fe Min	Fe max	Co Min	Co Max	Mo Min	Mo Max	
	Rene 41	3	3.3	18	20	0	5	10	12	9	10.5	
	M252	2.25	2.75	18	20	0	5	9	11	9	10.5	
			I		I		I		I			1
20											Thermol	
											SCIENT	IFIC



Trade Name	Ti Min	Ti Max	Cr Min	Cr Max	Fe Min	Fe max	Co Min	Co Max	Mo Min	Mo Max
Waspaloy	2.5	3.25	18	21	0	2	12	15	3.5	:
U-500	2.5	3.25	15	20	0	4	13	20	3	
Astroloy M	3.35	3.65	14	16	0	0.5	16	18	4.5	5.
Rene 77	3	3.7	14	15.25	0	0.5	14.25	15.75	3.9	4.
U-700	2.75	3.75	14	16	0	2	17	20	4.5	5.5

Why is Speed So Sought After?

29

Recycle application: potential extra income.... based on 500 incremental samples per day

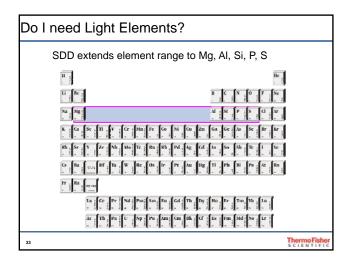
~500 more sorted samples at ~2 kg per sample x ~\$2 per kilo =

\$1,000/day incremental income with latest technology compared to current installed technology

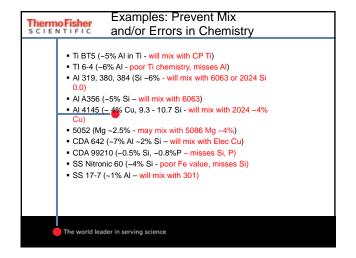
Latest technology can return an incremental \$1K/day

Only a few months of highly productive use may pay for newest technology!

Thermo Fishe

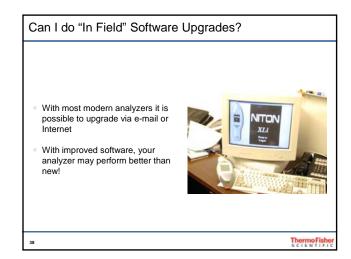

Speed (with Highest Performance)

- Isotopes are fast and rugged with good performance
- Miniature X-ray tubes and SDD's for vastly improved performance
 - Si PIN detector systems with X-ray tubes are least expensive and as good as needed for most routine sorting
 No light elements without vacuum or He purge
 - SDD are fastest, highest performance and most capable • Without vacuum or He purge can test Mg (12) –S (15)
 - Mg most difficult: sensitivty about 1% in air
 - Mg to 0.3% with vacuum or He purge
 - SDD with 50 kV tube and excitation parameter optimization is fastest of all and best performance
 - Provides light elements, high sensitivity tramp element detection, and best close (twin) alloy separations; essentially lab quality performance


Thermo Fisher

The Expectations of Today's Recycler	Do I need to Test Difficult Alloys or Tramp elements?
 Minimum requirements Accurate robust chemistries for many thousands of alloys Fast, high confidence ID's for hundreds of alloys Environmentally sealed and hardened for harsh conditions Point and shoot ease of use Good training and support Single piece, light, ergonomic, balanced, handheld unit under 4lbs High power, lightweight, Li ion batteries that last for 8+ hours 	 Ability to perform difficult high alloy separations for nearly twin alloys 301, 303, 304, 321 (Cr/Ni - S - Ti) 17-4, 15-5 (Cr/Ni) U-500, U-700 (Cr/Co) Waspaloy, Rene 77 (Cr/Co) M-252, Rene-41 (V) Monel R400 Vs Monel K500 (Ti)* Alloy C-4 Vs Alloy S (Ti) Si PIN detector sensitivity for tramp elements (e.g., Cu, Sn, Pb) Si PIN tramp element detection level: 0.05 - 0.1% SDD detector sensitivity for same tramp elements Tramp element detection level: 0.001 - 0.05%
31 ThormoFisher	32 Thermo Fisher

8



	190			Δ.	computer program may be used to
	和 1	<u>.</u>	1		pload alloy libraries to the instrumer
Library II Search					r to download libraries from the
* 7-12	1 Story inc	nn: [4.8		FileLishter (FileLation)	r to download libraries from the
- # 15+c3	Total AB	ine: 427		T Abarta a	nalyzer
- # TS-#Q					
+ TS-#3				0	r, latest analyzers have "on-board"
	filment fame	- Newson	- Name of Street, or other		dit capability
- 15-AQ4	10			6	un capability
+ TS-HOR					
- + T3-H12	1.2			٨	bilities
* Taca	5	1.00	1.00		
- · · · · · · · · · · · · · · · · · · ·	17				smart library
* 15-48	1	0.48	14		
+ T2-47	1				 corrects for LEC
· • TS 7+	0	17.00	25.00		 selects alloys for low source (Ti, V,
+ 12-13	19	84.00	75.00		
+ TS-T35	10	2.00	8.00		Cr)
+ 14.4H	1				 selects alloys for light source (Mg,
- * 3-5Pe	12				AI, Si, P, S)
* 15-7Hz	1				
· * 13-484	1	5.00	1.0		rename alloys
- * 13-3m	14.				
* 19-401	24			•	view chemical composition
+ 31Ch2	1.5				modify chemical composition
· · · · 20424	12				
+ 2Mei	10			•	add new alloys
- # 15-25-44	12				
	12			•	delete alloys
# 15-35-1 Ente # 15-35-4					
* 15-35-15em * 15-35-4 * 15-35-4	r				
* 15-36-1 Darks * 15-36-4 * 15-36-4 * 15-36-4 * 15-36-1	-				create custom libraries
* 15-35-15min * 15-35-4 * 15-25-42					create custom libraries print libraries

Summary: Before you Buy!

- Key things to consider about overall use, performance and alloy application: • Life of source: isotope Vs x-ray tube
- Routine alloys or difficult separations · Speed of testing (productivity/profits)
- · Light element/tramp element capability (SDD detector)
- Robustness of analyzer (sealed, hardened)
 Robustness of calibration and alloy grade library
 - FP or Empirical
- IF FP, is three consecutive element problem solved?
 153.33, Beta C, AINICos, etc. (hundreds of alloys)
 Auto optimization of all test parameters, including tube current (on the fly)
- · Ability to separate nearly twin (multiple close) alloys
- · Software upgrades (cost)

39

- · Support, expertise and quality of service · Comparability of data (same factory calibrations)
- Bottom line: test it in the yard on your toughest samples!

Thermo Fishe

And Now	
Questions???	
40	Thermo Fisher
	SCIENTIFIC